Delphi European Conference

Raphael & Jonathan Neve Ilil

Microtec Informatique MICROTEC

October 27/78 201 VERONA bit Time™



- Approaches to data sync

- Real-world situations

- Tips In implementing replication
- Introducing CopyCat

- Hands-on demo



1) Full database copy

* Quick & dirty approach

* OK for occasional read-only access
* Not scaleable

* Not flexible

* Not optimal




2) Selective data pumping

* Valid for tables that are small or quite
static

* Simple and reliable

* Can mix & match other methods for
larger or more dynamic tables

 Still not optimal resource usage

 Still read-only !




3) Change flagging

* Uses a field to mark records that have
changed

* Better resource management

* Finer control than the previous
methods

* Doesn't allow multiple node sync

* Can be complex & error prone

* Potentially read/write but complex to
handle




4) Triggers

* Triggers detect & log record changes

* Changes can be logged for multiple
nodes

* Allows reliable conflict management
(we know what changed)

* Database-level approach (multi-app)

* Complex to setup



COMPLEX

TRIGGER
BASED

SIMPLE /CH;I\R POWERFUL

\4

EASY



We've seen the WAYS
synchronization can be
implemented...

...now let's see some real
world situations that you will
encounter where replication

may be useful...



1) Head office / branch office

Data coming UP from

/\ branches : new orders,
N changes to customer

accounts, etc...

HEAD OFFICE
DATABASE

Data coming DOWN
from head office :

new products, price
~ changes, efc... This configuration can

BRANCH OFFICE « A » be handled using
various approaches

BRANCH OFFICE « B »




2) Multi-site distributed application

Y

() There are multiple sites that
Share all their data
Q% . Users must be
% SITE B able to edit the
same data
Ssimultaneously

~
SITE A

on different sites

o All databases
| need to be kept
in sync at all
hanisms

Simple sync mec times

are inadequate because
merging will be impossible ~—
SITEC




3) Mobile users

The team manager and the CEO also
connect periodically to merge their %
local data into the head office | —— iy

database and each downloads

different parts of the main database
for offline use \
~
TEAM

HEAD OFFICE CEO

MANAGER DATABASE N
rk

Information from the
mobile salesmen is
Salesmen wo
disconnected and

merged into the head
This configuration would be periodically connect to o

office database

difficult to handle elegantly upload new sales and
and reliably without a trigger download catalogue SALES
y 99 changes MEN

based approach




4) Live database mirroring (failover)

~

The database needs to be
@RIS D available at both sites at
WEB any moment
> APP DATABASE

Database mirroring

requires frequent WEB

/ synchronisation. APP
This situation requires a

trigger-based approach.

DATABASE




5) Load balancing
>

DATABASE
A copy of the
database needs to
be accessible from a
secondary server

) A

DATABASE

A simple database copy
would allow read-only
load balancing. Beyond
that ... think triggers !

PRODUCTION



— Design your database with replication in mind

* Make reliable primary keys
— Double PK (id + node name)
— Single PK with prefix
— GUIDs

* Avoid summary tables :
— E.g. : table with current stock per product
— Instead use a detailed table with one row per change.
— If need be, you can aggregate this data dynamically
using a view or a stored procedure.

* Beware of large update statements
— Logging time (trigger execution time)
— Performance issues (at replication time)



IT

— Make small blocks of records
* Break up replication into small chunks to avoid needing
to restart everything in case of broken connection.
* Short-lived transactions avoid deadlocks between
applications and replicator.

— Replicate as often as possible
* Lower risk of conflicts.
* Avoids ressource spikes.
* Better user experience

— Conflicts
* Set up automatic conflict resolution policies (if possible)
* Bring remaining conflicts to user's attention immediately
* Design applications so as to reduce possibility of
conflicts




— Challenges setting up trigger-based replication

* Record bouncing

* Design for resillience
— Errors must be logged and failing statements retried
— Databases may be inconsistent

» With one-way replication, destination database
may have changed.

» Even with two-way replication, there may be
inconsistency due to failed statements or
administration mistakes

» Therefore, don't blindly replicate the same SQL
operation (update/insert/delete) that occured in
master database : check whether record exists
or not, and update, insert or delete in order to
make databases consistent.

— Replication must be able to tolerate network
connection loss






- Faced with these considerations, we developed a set of VCL
components in order to encapsulate the complexities of
trigger-based replication

- The components allow a clean separation between the
business logic specific to each project and the low-level
database replication mechanism

- This allows developers to « plug in » replication capabilities
easily and reliably into their software

- The components take care of trigger creation, log parsing,
conflict management and allow easy personalization via VCL
events






	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19

