
Database 
Replication 
The Easy Way

Raphael & Jonathan Neve
Microtec Informatique



SESSION OVERVIEW

- Approaches to data sync
- Real-world situations
- Tips in implementing replication
- Introducing CopyCat
- Hands-on demo



APPROACHES TO DATA SYNC

1) Full database copy
•  Quick & dirty approach
•  OK for occasional read-only access
•  Not scaleable
•  Not flexible
•  Not optimal



APPROACHES TO DATA SYNC

2) Selective data pumping
•  Valid for tables that are small or quite 

static
•  Simple and reliable
•  Can mix & match other methods for 

larger or more dynamic tables
•  Still not optimal resource usage
•  Still read-only ! 



APPROACHES TO DATA SYNC

3) Change flagging
•  Uses a field to mark records that have 

changed
•  Better resource management
•  Finer control than the previous 

methods
•  Doesn't allow multiple node sync
•  Can be complex & error prone
•  Potentially read/write but complex to 

handle



APPROACHES TO DATA SYNC

4) Triggers
•  Triggers detect & log record changes
•  Changes can be logged for multiple 

nodes
•  Allows reliable conflict management 

(we know what changed)
•  Database-level approach (multi-app)
•  Complex to setup



APPROACHES TO DATA SYNC

SIMPLE POWERFUL

COMPLEX

EASY

 FULL
COPY

SELECTIVE
PUMP

CHANGE
FLAGGING

TRIGGER
BASED



TRANSITION

We've seen the WAYS 
synchronization can be 

implemented...

 ...now let's see some real 
world situations that you will 
encounter where replication 

may be useful...



REAL-WORLD SITUATIONS

1) Head office / branch office

HEAD OFFICE
DATABASE

BRANCH OFFICE « A »

BRANCH OFFICE « B »Data coming DOWN 
from head office : 

new products, price 
changes, etc...

Data coming UP from 
branches : new orders, 
changes to customer 

accounts, etc...

This configuration can 
be handled using 

various approaches



REAL-WORLD SITUATIONS

2) Multi-site distributed application

SITE A

SITE B

SITE C

There are multiple sites that 
share all their data

Users must be 
able to edit the 

same data 
simultaneously 

on different sites

Simple sync mechanisms 
are inadequate because 

merging will be impossible

All databases 
need to be kept 

in sync at all 
times



REAL-WORLD SITUATIONS

3) Mobile users

HEAD OFFICE
DATABASE

TEAM 
MANAGER

CEO

Information from the 
mobile salesmen is 

merged into the head 
office database

SALES
MEN

Salesmen work 
disconnected and 

periodically connect to 
upload new sales and 
download catalogue 

changes

The team manager and the CEO also 
connect periodically to merge their 

local data into the head office 
database and each downloads 

different parts of the main database 
for offline use

This configuration would be 
difficult to handle elegantly 

and reliably without a trigger 
based approach



REAL-WORLD SITUATIONS

4) Live database mirroring (failover)

DATABASE
WEB
APP

DATABASE
WEB
APP

PARIS

ROME

The database needs to be 
available at both sites at 

any moment

Database mirroring 
requires frequent 
synchronisation. 

This situation requires a 
trigger-based approach.



REAL-WORLD SITUATIONS

5) Load balancing  

DATABASE

REPORTING

SALES

PRODUCTION

DATABASE

A copy of the 
database needs to 
be accessible from a 
secondary server

A simple database copy 
would allow read-only 
load balancing. Beyond 
that … think triggers !



TIPS FOR IMPLEMENTING REPLICATION

– Design your database with replication in mind

• Make reliable primary keys
– Double PK (id + node name)
– Single PK with prefix
– GUIDs

• Avoid summary tables : 
– E.g. : table with current stock per product
– Instead use a detailed table with one row per change.
– If need be, you can aggregate this data dynamically 

using a  view or a stored procedure.

• Beware of large update statements
– Logging time (trigger execution time)
– Performance issues (at replication time)



TIPS FOR IMPLEMENTING REPLICATION

– Make small blocks of records
• Break up replication into small chunks to avoid needing 

to restart everything in case of broken connection.
• Short-lived transactions avoid deadlocks between 

applications and replicator.

– Replicate as often as possible
• Lower risk of conflicts.
• Avoids ressource spikes.
• Better user experience

– Conflicts
• Set up automatic conflict resolution policies (if possible)
• Bring remaining conflicts to user's attention immediately
• Design applications so as to reduce possibility of 

conflicts



TIPS FOR IMPLEMENTING REPLICATION

– Challenges setting up trigger-based replication
• Record bouncing
• Design for resillience

– Errors must be logged and failing statements retried
– Databases may be inconsistent

» With one-way replication, destination database 
may have changed.

» Even with two-way replication, there may be 
inconsistency due to failed statements or 
administration mistakes

»  Therefore, don't blindly replicate the same SQL 
operation (update/insert/delete) that occured in 
master database : check whether record exists 
or not, and update, insert or delete in order to 
make databases consistent.

– Replication must be able to tolerate network 
connection loss



INTRODUCING COPYCAT



INTRODUCING COPYCAT

- Faced with these considerations, we developed a set of VCL 
components in order to encapsulate the complexities of 
trigger-based replication

- The components allow a clean separation between the 
business logic specific to each project and the low-level 
database replication mechanism

- This allows developers to « plug in » replication capabilities 
easily and reliably into their software

- The components take care of trigger creation, log parsing, 
conflict management and allow easy personalization via VCL 
events



HANDS-ON 
DEMO !!


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19

